QuickRank: a C++ Suite of Learning to Rank Algorithms
نویسندگان
چکیده
Ranking is a central task of many Information Retrieval (IR) problems, particularly challenging in the case of large-scale Web collections where it involves effectiveness requirements and efficiency constraints that are not common to other ranking-based applications. This paper describes QuickRank, a C++ suite of efficient and effective Learning to Rank (LtR) algorithms that allows high-quality ranking functions to be devised from possibly huge training datasets. QuickRank is a project with a double goal: i) answering industrial need of Tiscali S.p.A. for a flexible and scalable LtR solution for learning ranking models from huge training datasets; ii) providing the IR research community with a flexible, extensible and efficient LtR framework to design LtR solutions and fairly compare the performance of different algorithms and ranking models. This paper presents our choices in designing QuickRank and report some preliminary use experiences.
منابع مشابه
An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies
The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...
متن کاملEffective Learning to Rank Persian Web Content
Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...
متن کاملQuickRank: A Recursive Ranking Algorithm
This paper presents QuickRank, an efficient algorithm for ranking individuals in a society, given a network that encodes their relationships, assuming that network possesses an accompanying hierarchical structure: e.g., the Enron email database together with the corporation’s organizational chart. The QuickRank design is founded on the “peer-review” principle, defined herein, and an hypothesis ...
متن کاملارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبهبندی در بازیابی اطلاعات
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...
متن کاملRevisiting the Nystrom method for improved large-scale machine learning
We reconsider randomized algorithms for the low-rank approximation of symmetric positive semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in data analysis and machine learning applications. Our main results consist of an empirical evaluation of the performance quality and running time of sampling and projection methods on a diverse suite of SPSD matrices. Our resul...
متن کامل